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Simple combinatorial theory of constructive enumeration of rooted trees and trees is suggested.
As a byproduct of this approach very simple recursive formulae for numerical (i.e. noncon-
structive) enumeration are obtained. The method may be simply generalized for (rooted) trees
with edges evaluated by multiplicities and vertices evaluated by alphabetic — atomic symbols.
In the process of constructive enumeration the (rooted) trees are represented by unambiguous
linear code composed of valences of vertices, edge multiplicities, and atomic symbols assigned
to vertices. The elaborated theory may serve as a simple algorithmic background of computer
programs for constructive enumeration of acyclic molecular structures containing heteroatoms
and multiple bonds.

1. iNTRODUCTION

The problem of constructive enumeration' of acyclic molecular structures (or
graph-theoretically, trees) was initially studied and successfully solved by Joshua
Lederberg45 for purposes of his famous DENDRAL project6. He devised a very
simple procedure for coding acyclic molecules, the procedure produced a linear
string composed of alphanumerical entries. These linear strings unambiguously
represent acyclic molecules in a manner closely related to the usual chemical nota-
tion. Applying basic ideas of Henze and Blair78 for numerical (i.e. nonconstructive)
enumeration of alkanes and their simple analogs and derivatives, Lederberg was
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able to formulate effective algorithm for constructive enumeration of acyclic mole-
cules. In the first step the so-called radicals (rooted trees) were constructed, and then
(second step) linked together to form alkanes. This method is based on the well-
-known Jordan theorem9 10, (see Theorem 1) stating that each tree has uniquely
determined centroid (or bicentroid, but not simultaneously both of them) represented
by a vertex (edge) used for the above mentioned linkage of radicals producing
alkanes.

The problem of linear codes of (rooted) trees has frequently been studied in the
literature". The interest is justified, since these linear codes solve correctly the
problem of isomorphism of (rooted) trees, i.e. if a couple of (rooted) trees have the
same code, then they are isomorphic. We shall use the linear codes initially elaborated
by Read" (cf. also Knop et al.'2). This approach will be generalized towards the
possibility to reflect the multiplicities of edges as well as the atomic symbols assigned
to vertices.

Recent literature' —3,13 18 presented many different approaches for constructive
enumeration of general molecular structures, i.e. not restricted only to cyclic struc-
tures. One approach6"9, though with implanted heuristics but likely most effective
one, is based on the constructive enumeration of trees; some special vertices (treated
as the so-called superatoms) are expanded in cyclic structures. It means that almost
all chemically relevant structures may be constructed in this simple way initially
suggested by Lederbergt9. The diversity of the produced structures depend entirely
on the class of used superatoms. The class of superatom determine the kind of cyclic
system, in which the superatom can be expanded. Therefore, we believe that there
is very important theoretical as well as computational task to formulate the basic
principles of constructive enumeration of acyclic structures. The purpose of this
communication is to formulate an effective (theoretical) method, a method employing
only simple graph-theoretical and combinatorial notions for constructive enumera-
tion of acyclic molecular structures, and equipped with flexible theoretical tools for
incorporation of additional requirements, characterizing more deeply their topology.

2. BASIC CONCEPTS

Let us consider a tree10 (connected graph without cycles) T = (V, E), where V =

{v,, V2, ..., VN} is a nonempty (i.e. N � 1) vertex set and E = {e,, e2, ...,eM}
an edge set. The cardinalities of sets Vand E, corresponding to the integers N and M,
respectively, are mutually related by

M=N—1. (1)

Let v e V be a vertex of the tree T, the valence of this vertex, denoted by val(v), is
the number of edges that are incident with the vertex v. The sum of valences of all
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vertices satisfies'°

val(v) = 2M = 2(N — 1). (2)
VEV

A rooted tree'0 has one vertex, called the root, which is especially distinguished
from the vertices of V. Formally, the rooted tree will be determined as an ordered
triple

T(v) = (V,E,v), (3)

where v e V is the root of the rooted tree T(v). The two rooted trees T(v) = (V, E, v)
and T'(v') = (v', E', v') are isomorphic'° (T(v) T'(v')) if and only if (if) there
exists a 1—i mapping #: V—÷ V' which saves the adjacency of vertices and maps the
root of T(v) on the root of T'(v'), i.e. cb(v) = v'.

For every tree there exists a unique vertex or an edge. The unique vertex may be
classified as a root, in the case of a unique edge a vertex incident with it may be
classified as a root.

Theorem 1. Let T be a tree composed of N vertices, the following three different
cases should be separately considered:

(1) For odd N = 2k + 1 there exists a unique vertex, called the centroid, such
that all (two or more) incident subtrees are composed, at most, of k vertices (see
Fig. 1, graph A).

For even N 2k there exists either
(2) a unique vertex — centroid such that all (three or more) incident subtrees

are composed of less than k vertices (see Fig. 1, graph B), or
(3) a unique edge, called the bicentroid, such that the incident two subtrees are

composed exactly of k vertices (see Fig. 1, graph C).
This theorem'° was initially proved by Jordan9 in 1869. It states that for trees

FIG. 1

The tree A composed of seven vertices I
contains the centroid denoted by heavy dot. CENTROD

The trees B and C are composed of even A (B)

number of vertices (ten and eight, respecti-
vely), the tree B contains centroid whereas
the tree C contains the bicentroid denoted I
by bold edge BICEROfD

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



1780 Kvasnika, PospIchal:

with an odd number of vertices the centroid is unambiguously determined, whereas
for trees with even number of vertices there exists either a centroid or a bicentroid
(an edge of T). If a tree T has a bicentroid, then this tree has a pair of vertices (in-
cident with the edge — bicentroid) and one of them may play a role of the centroid;
this potential ambiguity will be simply removed by making use of the lexicographical
ordering of codes assigned to the rooted subtrees (see Section 3).

The above theorem claims nothing about the finding of the centroid or bicentroid
in a tree, it ensures only that one of them does exist. Since the concept of centroid/
/bicentroid is of great importance for our forthcoming considerations, it is necessary
to have an algorithm for finding of centroid/bicentroid11. This algorithm will be
formulated in a recurrent manner: for each step the vertex set Vis divided into two
disjoint subsets,

V=VuV, (4)

where the subset V and e is composed of the so-called evaluated and nonevaluated
vertices, respectively. Every vertex v e 1" is evaluated by an integer denoted by
(v). A vertex v e J' is called the candidate if it will satisfy the following two condi-
tions: (1) The vertex v is adjacent to one or more evaluated vertices, and (2) the vertex
is adjacent to just one nonevaluated vertex. A candidate v e is evaluated by

(v) = 1 + (v'), (5)

where the summation runs over all already evaluated vertices incident with the vertex
v. The algorithm is applicable for trees composed of three or more vertices. For
trees with one or two vertices a determination of centroid/bicentroid is a trivial task.

Algorithm 1.

Step 1. (Initialization) The marginal vertices of T (i.e. the vertices with unit
valences) are evaluated by 1.

Step 2. If the number of nonevaluated vertices is equal to 1 (2), then go to step 4

(step 5).
Step 3. The candidate with the minimal value of potential evaluation is evaluated.

If there exists more than one such candidate, then all of them are evaluated. Go to
step 2.

Step 4. The nonevaluated vertex is centroid — go to step 6.
Step 5. If values of potential evaluations of the two remaining vertices are equal,

then an edge simultaneously incident with both candidates is bicentroid. Otherwise
the centroid is the vertex with greater potential evaluation.

Step 6. The end of algorithm.
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Simple illustrative examples of this algorithm are shown in Fig. 2. We see that the
evaluations of vertices are equal to numbers of vertices of the corresponding sub-
trees going successively from the centroid/bicentroid to marginal vertices. It is easy
to understand that in the case of last two still nonevaluated vertices with equal poten-
tial evaluation (see step 5) these should be adjacent and form an edge called bi-
centroid. Moreover, the algorithm may be taken as an alternative constructive
proof of the Theorem 1.

3. LINEAR CODES OI TREES

Recently, the concept of linear codes for the constructive enumeration of trees was
studied by Read'1 and by Knop et al.12 They demonstrated the uniqueness, effecti-
veness, and compactness of this approach. First, we shall present their recursive
construction for rooted trees and then the method will be generalized also for trees.

The linear code for rooted trees consists of a string of digits which corresponds
either to the valence of the root or to the valence decreased by 1 for other vertices
(see Fig. 3). We have to emphasize that the linear code approach is applicable only
for a rooted tree T(v) = (V, E, v) with the valences of vertices restricted by 1
� val(v) � 9 and 1 � val(v') � 10, Vv' e V\ {v}. The linear code assigned to the
rooted tree T(v) will be denoted by code (T(v)); this code may be simply inter-
preted as a decimal number. In case of valences greater than 10 there is a possibility
to replace the code given by a p-digit number (where p is number of vertices) by
a p dimensional vector.

/
1 st stp 2 0 step

• -'

- -.ths'ep

FIG. 2

-
2o sep

Illustrative examples of Algorithm 1 applied
to graphs A and C in Fig. 1. The vertices
labeled by stars are the candidates, potential
evaluations of vertices are given in paren-
theses 3 0 -3ep

end)
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The linear code assigned to the rooted tree T(v) composed of one vertex (i.e.
V = {v}) is a zero digit, code(T(v)) = ,O'. Let us now study a rooted tree T(v) com-
posed of two or more vertices and assume that its root is incident with q (1 q 9)
subtrees, i.e. deleting the root from the tree we get q, the so-called first-generation
subtrees. These first-generation subtrees will again be formally treated as rooted
trees, the roots of which are identified by vertices that were adjacent to the original
root of T(v). The formed rooted trees are denoted by T1(v1), T2(v2), ..., T(v). The
linear code of the original root T(v) is determined as:

code (T(v)) = 'q' + code (T11(v1)) + ... + code (Tjq(Vjq)) (6)

wherein the operation '+' means the concatenation of "subcodes", and indices
(i1, j2, ... q) correspond to a permutation of (1, 2, ..., q) such that the codes are
lexicographically ordered,

code (Tjv11)) code (T12(v2)) ... code (lIjq(Vjq)) . (7)

If in the r.h.s. of Eq. (6) a rooted tree code (T1(v)) is composed of more than one
vertex, then its code is determined by an analog of Eq. (6); this procedure is recursi-
vely repeated until the appearing rooted subtrees are composed of a single vertex
(their codes are the unit strings composed of zero digit, '0'. The construction of
linear codes for rooted trees is illustrated in Fig. 3.

Theorem 2. Two rooted trees T(v) and T'(v') are isomorphic if their linear codes
are equal,

T(v) T'(v') code (T(v)) code (T'(v')). (8)

FIG. 3

Finding of linear code of a rooted tree. In
parentheses are given initial evaluations of
vertices, all vertices are evaluated by their
valences decreased by 1, except for the root,
evaluated by its valence. The linear code is
constructed successively going from the
marginal vertices to the root. For a given
vertex, different of marginal vertices, a linear
subcode is constructed by the concatenation
of its evaluation with the subcodes (lexico-
graphically ordered) of its predecessors
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This very important theorem was proved by Knop et al.12; it states that the rooted
tree is unambiguously represented by a string of decimal digits.

The above described linear code approach for rooted trees may be straightfor-
wardly enlarged also for trees. Following Theorem 1, each tree has unique either
a centroid or a bicentroid, but not simultaneously both of them. If the tree T =
= (v, E) has a centroid corresponding to the vertex v e V, then the given tree is
formally considered as a rooted tree T(v), and the linear code of the tree T is set
equal to code (T(v)), i.e. code (T) = code (T(v)). Second, if the tree T has a bi-
centroid equal to an edge e = [v, v'] e E, then the linear code of T is lesser linear
code of code (T(v)) and code (T(v')).

code (T) — Jcode (T(v)), (code (T(v)) � code (T(v')))
(9)

code (T(v')), (code (T(v')) < code (T(v)))

It means also, that for trees with bicentroid the linear codes are unambiguously
determined. Construction of linear codes is illustrated by simple examples in Fig. 4.

Theorem 3. Two trees T and F are isomorphic if their linear codes are equal,

T T' code (T) code (T'). (10)

This theorem is an immediate consequence of the above Theorems 1 and 2.
Algorithm 1, presented in the previous section, for finding of a centroid/bicentroid,

may be simply modified in such a way that it gives linear code of the tree. One only
needs to substitute the integer evaluations of single vertices by the corresponding

FIG. 4

Finding the linear codes of trees A and C
in Fig. 1. The root in A1 corresponds to the
centroid of the tree, the linear code of A
in Fig. 1 is equal to the linear code of rooted
subtree A1. The tree C in Fig. 1 has a bi-
centroid, the vertices incident with the edge-
-bicentroid are used as roots, then we
construct linear codes of the corresponding .
rooted trees C1 and C2, lesser code deter-
mines the linear code of the tree C in Fig. 1.
The correct linear codes are placed at a block
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linear codes of subtrees, constructed according to the formulae (6) and (7). The
marginal vertices are initially evaluated by the unit string '0'. Some small formal
difficulties may arise when the studied tree contains bicentroid. In that case the linear
codes assigned recursively to the vertices from the bicentroid would not be imme-
diately used for construction of the linear code of the whole tree. We then select
the vertex with a smaller linear code as a centroid and linear code of the tree is
constructed from codes of vertices belonging to the bicentroid. We increase the first
digit of linear code of centroid by 1 and concatenate the obtained code with the
code of the other vertex of the bicentroid, see Fig. 5.

4. CONSTRUCTIVE ENUMERATION OF ROOTED TREES

In our approach the constructive enumeration of rooted trees is based on a recursive
process of construction of linear codes from the already constructed rooted trees
with smaller number of vertices than that one just constructed. The approach will
automatically ensure that the produced codes correspond to nonisomorphic rooted
trees (see Theorem 2) and that it is exactly counting (enumerating) their appearance.

A rooted tree T(v) = (V, E, v) is called q-nary if val (v) = q, i.e. the root v is
adjacent to q vertices. Deleting the root v from T(v) we get q subtrees that may be
again formally considered as rooted trees. In particular, let the root of T(v) be ad-
jacent to vertices {v1, v2, ..., Vq} V, deleting the root v we obtain the so-called
first-generation rooted trees T1(v1), T2(v2), ...,T(v), where JvJ = 1 + Jv1J +

/

• 22DO.3UCO.[2OO3 FIG. 5

Construction of linear code by making use
of the modified form of Algorithm 1 for
a tree with bicentroid, the resulting code is
placed in a block
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I V2 + ... + [J'. This process may be recursively repeated until the produced
rooted trees are composed of only one vertex, see Fig. 6.
The above simple considerations, carried out in a reverse way and combined with
the construction of linear codes of rooted trees, offer an effective method for con-
structive enumeration of rooted trees (initially used by Henze and Blair7'8 for
enumeration of monosubstituted alkanes, e.g. alcohols, and by Joshua Leder-
berg4'5 for constructive enumeration of acyclic molecules in the framework of his
famous DENDRAL project6).

Let be a class of all mutually nonisomorphic rooted trees composed of p
vertices, its cardinality, (i.e. number of elements — rooted trees) is denoted by rp,

= ri,. We say that a rooted tree T(v) belongs to the class ,, formally T(v) e
if it is isomorphic to a rooted tree from (i.e. T(v) has p vertices). The goal of
our theoretical considerations is to construct the class , under an assumption
that the classes P1, 2' G.1 were already constructed. A q-nary rooted tree
T(v) from , (i.e. the vertex v is adjacent to q vertices that form again the roots
of the first-generation rooted trees, see second paragraph of this section) may be
formally expressed as follows

T(v) = v T1(v1) T2(v2) ... $ Tq(vq), (11)

where the r.h.s. is interpreted as a "gluing" of the vertex v (a root of the produced
tree) with the (first generation) rooted trees T1(v1), T2(v2) , T(v), the resulting
rooted tree is isomorphic to T(v). The vertex and edge sets of T(v) are determined by

V={v}uVjuV2u...uV, (12a)

E = {[v, vi]; 1 � i � q} u E1 u E2 u ... u Eq. (12b)

1,

FIG.6 , ,
Deleting the root (indexed by 1) from the
rooted tree we get the first generation rooted

6

trees with roots indexed by 2, 3, and 4
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The only restriction imposed on the rooted trees T1(v1), T2(v2), ...,T(v) is that
their number of vertices should be restricted by

vI=1+Iv1J+Iv2J+...+IvJ. (12c)

Summarizing our considerations, a rooted tree T(v) is unambiguously reconstructed
(up to an isomorphism) from its first-generation rooted trees restricted by the condi-
tion (12c).

Theorem 4. Let T1(v1), T2(v2), ..., Tq(vq) be rooted trees restricted by p = 1 +
+ v1J + 1V21 + ... + J', and v be a vertex not belonging to these rooted trees,
then the expression (ii) determines unambiguously (up to an isomorphism) a q-nary
rooted tree T(v) composed of p vertices, i.e. vJ = p and val (v) = q.

The above theorem offers attractive and straightforward possibilities for con-
structing all rooted trees with the prescribed number of vertices and given valence
of their roots. The thus obtained rooted trees will be represented by their linear
codes, constructed by the way outlined in the previous section.

Let us consider a subclass p,q , composed of all q-nary rooted trees with p
vertices. Following the above considerations, the rooted trees from pq can be
exhaustively constructed by making use of their first-generation rooted trees which
belong to Pii, 2' ..., p-q Here we have to note that the set contains only one
isolated vertex — root, i.e. r1 = 1. The integer (p — 1) (where p 2) may be de-
composed into positive integers 1 a < b < ... as follows

(13a)

oc+fl...=q, (13b)

where positive integers , fi, ... determine "multiplicities" of appearance integers
a, b, ... Such a decomposition will be formally abbreviated in the form of
For instance, if we put p — 1 5 and q = 3, then we get two distinct decomposi-
tions 1122 and 1231. The decomposition restricted by Eqs (13a—13b),
means that in the process of construction of q-nary rooted trees with p vertices we
shall use as the first-generation c rooted trees from the class a' /3 rooted trees from
'b' and so on. Here it is very important to emphasize that from the class (for
x = a, b, ...) we take into account -tuples of rooted trees in which some of them
may be identical. In terminology of combinatorics we say that all combinations of
elements (i.e. rooted trees) with allowed repetitions are considered. Their number
is determined by

[r]
(rx

+
1) (14)
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where ( = p!/[q!(p — q)!] is the so-called binomial number. Let T1(v1), T2(v2),

Tq(vq) be rooted trees assigned to the decomposition i.e. the first x trees
are from the class 13a, the next /1 trees are from the class 2db' etc., then the resulting
rooted tree T(v) and its linear code are determined by Eqs (11) and (6), respectively.
Repetition of this process for all decompositions will give us all possible
q-nary rooted trees composed of p vertices. If this construction is successively repeated
for fixed p and q = 1, 2, ..., p — 1, then we get all rooted trees from .,. Simple
illustrative example of the construction of class 9l, is given in Fig. 7. Finally, the
above theory gives also a very simple formula for the number of rooted trees in

i.e. the number rp J.pJ'

p—I

rp = Er:] [r] ... , (15)q=1 ab$

where the symbols [] were defined by Eq. (14) and the second summation run
over all decompositions of the integer (p — 1) restricted by Eqs (13a —13b).

The general theory of constructive enumeration of rooted trees is straightfor-
wardly applicable also in chemistry for enumeration of acyclic monovalent functional
groups (radicals). There is only necessary to bound from above the valence of carbon
roots by 3, then we automatically arrive at results initially obtained by Henze
and Blair7'8 and Joshua Lederberg4'5.

. ( v
FIG.7

Bottom part of this figure illustrates the
construction of rooted trees composed of v. .
four vertices. In parentheses are formally
specified the ways of construction of rooted
trees from the same line
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5. CONSTRUCTIVE ENUMERATION OF TREES

The constructive enumeration of trees shares many common features with the con-
structive enumeration of rooted trees outlined in the previous section. The main
problem emerging here concerns the problem of which vertex of a tree is to be
classified as a root. Fortunately, the problem with the selection of root is unambi-
guously solved by the Theorem 1. The centroids are declared as roots; if a tree has
a bicentroid, then one of its vertices may play the role of a root. We shall study
separately the trees composed of odd and even number of vertices.

5.1 Trees with Odd Number of Vertices

According to Theorem 1, for trees composed of p = 2k + 1 vertices the centroid
is unambiguously determined in such a way that it is incident with two or more
rooted trees composed of at most k vertices. It means, for trees with an odd number
of vertices the centroids may be declared as roots, and the whole approach to con-
structive enumeration of rooted trees is applicable, with minor modification, also to
the enumeration of trees.

Let 5, be a class of all mutually nonisomorphic trees with p vertices, its cardinality
(i.e. number of elements — trees) is denoted by ti,. We say that a tree T belongs to the
class 5,, formally T .9,, if it is isomorphic to a tree of .9, (i.e. T has p vertices).
The class .9 is composed of one tree represented by single isolated vertex, t1 = 1.
A tree T = (v, E) with centroid v EV, where p is an odd integer determined by
p = 2k + 1, may be formally treated as a rooted tree T(v) = (v, E, v). The root v
should be adjacent to q 2 vertices {v1, v2, ...,vq} V, deleting the vertex v we
get the first-generation rooted trees T1(v1), T2(v2), ..., Tq(vq) restricted by

Vif+(V2+...+Vq+1=p=2k+1, (16a)

(for i=1,2,...,q), (16b)

where the last inequalities (16b) reflect the fact that the subtrees are composed of at
most k vertices. Since the root v assigned to the centroid of T is unambiguously
determined we gt an analog of Theorem 4 for trees.

Theorem 5. Let T1(v1), T2(v2) Tq(vq), where q 2, be rooted trees restricted
by Eqs (16a to 16b) and v be a vertex not belonging to these rooted trees, then the
expression (ii) determines unambiguously (up to an isomorphism) a tree T composed
of p = 2k + 1 vertices and its centroid is equal to the vertex v.

In a way similar to that for rooted trees, this theorem offers simple method for
constructive enumeration of trees with odd number of vertices. In order to construct
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the class 5,, where p = 2k + 1, we need to know the classes of rooted trees ,
hence, the construction of trees should be preceded by the construction

of rooted trees composed of at most k vertices.
The class 5, is divided into disjoint subclasses 9p,1' 9p,2 p,q' where

LTp,q is composed of all possible trees with p = 2k + 1 vertices and with q-nary
centroid — root. Following Theorem 5, a tree T e pq can be constructed by
making use of the so-called first generation trees T1(v1), T2(v2), ...,T(v) that are
restricted by Eqs (16a —16b). The integer (p — 1) (for p 2) is decomposed into
positive integers (cf. Eqs (13a —13b)),

(17a)

(17b)

(1 7c)

its abbreviated form is This decomposition determines the form of rooted
trees T1(v1), T2(v2), ..., T(v) in Eq. (11). The process of constructive enumeration
of trees with odd number of vertices is illustrated in the upper part of Fig. 8.

The same approach may be also used for simple numerical (i.e. nonconstructive)

I

FIG. 8

Construction of all trees with six vertices.
These trees are divided into two disjoint
subsets composed of trees with centroid
(.IT) and trees with bicentroid (3C))
In the upper part trees with a centroid are
given, they are constructed by three different
ways, formally determined by expressions
in parentheses. The bottom part illustrates
trees with a bicentroid, they are formally
determined by introduction of an edge —
bicentroid between roots from . If we
restrict the maximal valence of vertices to
4, then the tree from the third line should
be omitted
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enumeration of trees from 5, we get
p—i

Er:] [r] ... , (18)
q-2 ab$...

where the second summation runs over all decompositions restricted by
Eqs (1 7a —1 7c). Assuming that the first summation in Eq. (18) runs only up to 4,
and that classes k are composed of rooted trees with at most four-
-valence vertices, then the formula (18) provides the results initially obtained by
Henze and Blair7'8. Moreover, the constructive enumeration of trees restricted by
these constraints produces the same trees — alkanes as the method initially suggested
by Joshua Lederberg4'5.

5.2 Trees with Even Number of Vertices

The trees with even number (p = 2k) of vertices may have either a centroid or a bi-
centroid. The centroid is incident with three or more first generation rooted trees
composed of less than k vertices; the bicentroid is incident with two rooted trees
composed of exactly k vertices. This "dichotomy" centroid/bicentroid causes some
formal difficulties in the constructive enumeration of trees with even number of
vertices. The trees from .9, (for p 2k) have two distinct origins, the first ones
(with centroid) are those trees constructed in close analogy to the trees with odd
number of vertices; the second ones (with bicentroid) are constructed by making
a simple "linkage" of two rooted trees, both containing exactly k vertices. The
class .9 may be decomposed into two disjoint subclasses of trees with centroid or
bicentroid,

U 3r(bc) (19)

their cardinality is denoted by t and respectively, i.e. t, = t + The
symbol denotes a subclass of .9 composed of the trees with a centroid —
root adjacent to q � 3 rooted trees that are containing less than k vertices.

Let us start our considerations by the construction of trees belonging to the sub-
class .9. A tree T e has a centroid — root v incident with q vertices
{v1, v2, ..., Vq}, deleting the vertex v we get the first-generation rooted trees T1(v1),
T2(v2), ..., Tq(Vq) restricted by

Vi+jV2+...+fVq+lp2k, (20a)

1 < k, (for I = 1, 2, ..., k). (2Db)

Since the centroid v is unambiguously determined (see Theorem 1) we may formulate
a theorem which ensures the uniqueness of T E5 determined by the first genera-
tion rooted trees.
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Theorem 6. Let T1(v1), T2(v2), ...,Tq(vq), where q 3, be rooted trees restricted
by Eqs (20a —20b) and v be a vertex not belonging to these trees, then the expres-
sion (ii) determines unambiguously (up to an isomorphism) a tree T composed of
p 2k vertices with a centroid equal to the vertex v.

This theorem offers, similarly as in the previous cases, a simple way how to con-
struct exhaustively the trees from the subclass 5, where p =2k and q � 3. Re-
peating this approach for all q = 3, 4, ..., p — 1, we get the whole subclass

We shall not repeat again the details of this construction, it is quite similar to
the previous constructions. The decomposition of the integer (p — 1) onto positive
integers 1 a < b < ... k — 1, represented by is restricted by Eqs
(1 7b —1 7c). These decompositions specify the first-generation rooted trees T1(v1),
T2(v2), ..., Tq(Vq) in Eq. (ii). The number t of trees in 5 is determined by

p— 1

= Er:] [r] .... (21)
q=3 abP...

The trees of with bicentroid are constructed in the same way as it was al-
ready outlined (see comment above Eq. (9) and the last paragraph). Let us now
consider two rooted trees T1(v1) and T2(v2) taken from the class Gk. Formally, if
we connect the roots v1 and v2 by an edge [v1, v2], we obtain the following tree

T = (V, E) = T1(v1) T2(v2), (22a)
where

V=V1uV2, (22b)

E = {Evi, v2]} u E1 u E2 . (22c)

The resulting tree T belongs to the class (p = 2k), its bicentroid is formed
by the edge Evi, v2].

Theorem 7. Let T1(v1) and T2(v2) be rooted trees from the class k'then the ex-
pression (22a) determines unambiguously (up to an isomorphism) a tree composed
of even number of vertices, p = 2k, and its bicentroid is equal to the edge [v1, v2].

Following this theorem we can easily construct all trees from Here it must
be emphasized that each pair of rooted trees, irrespective of whether they are iso-
morphic or not, should be in Eq. (22) counted exactly once. The number 4," of
trees in is simple determined by

= Er] . (23)

The construction of trees with even number of vertices and with centroid or bi-
centroid is illustrated in Fig. 8.
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As was already mentioned, the present theory of constructive enumeration of
trees is straightforwardly applicable for constructive enumeration of alkanes. It is
only necessary to restrict the maximal valence of vertices — carbon atoms to 4;
the obtained result exactly agreed with those obtained by Henze and Blair7'8 and
by Joshua Lederberg4'5.

6. CONSTRUCTIVE ENUMERATION OF TREES WITH MULTIEDGES

To extend the possibilities and scope of the constructive enumeration of trees towards
actual acyclic chemical systems it is vital to take into account also multiple edges
(which correspond to multiple bonds in molecules). We say that a tree T = (v, E)
is edge-evaluated if its edges are evaluated by positive integers called multiplicities.
Formally, the evaluation of edges consists in a mapping

(24)

where the integer p(e) is the multiplicity of an edge e E E. A tree T with edges
evaluated by Eq. (24) is represented by an ordered triple

T(p) = (v, E, (i9). (25)

The difference between T and T((p) is well chemically assessed by the so-called
unsaturation6,

unsat (T(p)) [co(e)
— 1]. (26)

CEE

To some exbnt, unsaturation indicates the appearance of edges with multiplicities
greater than one, its zero value means that all edges of T(p) are of unit multiplicity.
For example, if unsat (T(p)) = 2, then the tree has two double edges or one triple
edge, both these cases correspond to the same value of unsaturation.

Two edge-evaluated trees T(p) = (V, E, p) and T'(p') = (V', E', p') are iso-
morphic if there exists a i—i mapping

(27)

which saves simultaneously the adjacencies of vertices and the evaluation of edges,

p([v, v2]) = p'([/i(v), 1Ii(V2)]), (28)

for each [v1, v2] e E and the corresponding "mapped" edge [/i(v1), /i(v2)] e E'.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Review 1793

in a similar way we introduce also the notion of edge-evaluated rooted trees and
their isomorphism.

Let us consider an edge-evaluated rooted tree T(v, 'p) = (V, E, v, p). Deleting
from T(v, (p) its root incident with q vertices {v1, t'2, ..., v} V, we get the first-
-generation edge-evaluated rooted trees T1(v1, (P) T2(v2, (P2)..., Tq(vq, çoq). The
evaluations — mappings Pi' P2 ••• are simple restrictions of the original mapping

with respect to the edge sets E1, E2, ...,Eq.

p.(e) = J p(e), (for e e E1)
(29)

10, (foreE1)

The linear codes of edge-evaluated trees may be constructed by the way already
outlined, see Eqs (6— 7), enlarged by "subcodes" which determine the multiplicities
of edges. In particular, the linear code code (T(v, p)) is enlarged at the first position
by an integer — digit specifying the multiplicity of edge [v, v,] E

(T(v1, go.)) = 'q([v, v1])' + code (T(v1, 'p)) . (30)

The symbol '+' should be interpreted as concatenation of "subcodes". Then the
linear code of T(v, go) is determined as follows:

code (T(v, go)) = 'q' + & (T(v, )) + ... + (T(v,, q)), (31)

where the indices (u, ..., w) correspond to a permutation of (1, ..., q) such that
the enlarged codes are lexicographically ordered,

(T(v, )) � ... (T(v, (P)). (32)

The above procedure of construction of enlarged linear code is recursively repeated
until the "first-generation" rooted trees appear to be composed of only one vertex,
see Fig. 9.

Since the concept of centroid/bicentroid is determined for trees irrespective
whether the edges are evaluated or not, they may be also assigned to the edge-
-evaluated rooted trees. If a tree T(go) has a centroid, then it is classified as a root
of T(go). Let v be the centroid of T(go), then this tree may be formally treated as an
edge-evaluated rooted tree T(v, (/3), the linear code of T(go) is determined as follows:

code (T(go)) = code (T(v, go)). (33)

For an edge-evaluated tree with bicentroid [v1, v2], the linear code of T(go) is equal
to lesser linear code of T1(v1, (Pi) and T2(v2, go2), see Eq. (9). Analogs of Theorems 2
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and 3 are also satisfied for edge-evaluated trees and rooted trees. That is, if a pair
of these entities has the same linear codes, then they are isomorphic. Algorithm 1
may be simply modified in such a form that it provides not only a "localization"
of centroid/bicentroid but also the corresponding linear codes.

Let ' b the class of all possible mutually nonisomorphic edge-evaluated rooted
trees with p vertices and with unsaturation equal to i; its cardinality — number
of elements will be denoted by r. The approach of reconstruction of a rooted tree
from its first generation rooted trees described previously is not fully applicable for
edge-evaluated rooted trees. In particular, the expression (ii) does not contain
necessary information about the multiplicities of edges incident with the root v.
Hence, in order to use also an analog of Eq. (ii) for the reconstruction of edge-
-evaluated rooted trees, the multiplicities should be prescribed in a proper form.
Let S1, 2, ..., Sq be the prescribed multiplicities, then the edge-evaluated rooted
tree T(v, p) reconstructed by Eq. (ii) has vertex and edge sets determined by Eqs
(12a —12c), and moreover, the mapping p and the unsaturation are determined by

(p(e)
j p(e), (for e E E)

(34a)
1 s, (for e = [v, v1])

unsat (T(v, (p)) = [unsat (T(v, )) + s — 1]. (34b)

The relation (34a) means that the evaluation of T(v, q,) is formed as extensions of
'Pi' P2' ... Pq, and the created edges [v, v1], [v, v2] ..., [v, vq] are evaluated by the
prescribed values S1 2' ..., Sq. The relation (34b) determines the unsaturation of
T(v, cp) as the sum of unsaturations of the first-generation subtrees plus the unsatura-
tions of created edges.

FIG. 9

Illustrative example of the construction of
linear code for rooted trees with multiedges.

4 The rooted tree A is composed of seven
vertices, one double edge, and one triple
edge. The evaluation of its vertices is dis-
played in B. Each evaluation is composed
of two entries, the first one corresponds to
the multiplicity of an edge incident with
the vertex and the second one is determined
in the same way as for simple trees with-
unevaluated edges. The resulting linear code
(placed at the block) is constructed successi-

(C) vely going from the marginal vertices to the
root
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Theorem 8. Let T,(v1, 'P) T2(v2, 'P2)' ..., Tq(vq, (Pq) beedge evaluated rooted trees,
v be a vertex not belonging to these rooted trees, and s1, S2, ..., Sq a sequence of pos-
itive integers. Then the expression (11) determines unambiguously (up to an isomor-
phism) an edge-evaluated q-nary rooted tree T(v, 'P)with mapping 'P and unsaturation
determined by Eqs (34a —34b).

This theorem represents a generalization of Theorem 4; it is suitable for a recon-
struction of edge-evaluated trees from smaller rooted trees with specified unsatura-
tions and multiplicities of created edges.

Let us consider a subclass j composed of q-nary edge-evaluated rooted
trees with p vertices and with unsaturation equal to i. Following the Theorem 8,
the rooted trees of are exhaustively constructed by making use of their first
generation predecessors, i.e. edge-evaluated rooted trees with smaller number of
vertices than p. The integer (p — 1) (where p 2) and i are simultaneously decom-
posed at the form of distinct ordered triples,

(a,], r) (b, k, s)' ... , (35)

where the first entries 1 � a < b < ... <p — 1 correspond to the number of
vertices, the second entries 0 � j, k, ... determine the unsaturations, and the third

entries 1 � r, s, ... are the prescribed multiplicities of the created edges. The "ex-
ponents" 1 � , /3, ... determine the number of appearance of single triples. All
these entities are restricted by the following set of conditions:

(36a)

(36b)

(j+r—1)+(k+s—1)fl+...=i. (36c)

The first two conditions are obvious, they mean that an edge-evaluated q-nary rooted
tree with p vertices is constructed. The last condition (36c) restricts the possible
unsaturations of subtrees and multiplicities of the created edges in a way that the
constructed rooted tree is of the prescribed unsaturation i. For instance, if p — 1 = 5,

q 3, and i = 1 we get six decompositions: (1, 0, 1)2 (3, 0, 2)1, (1, 0, 1)1 (1, 0, 2)1
(3, 0, 1)1, (1, 0, 1)2 (3, 1, 1)1, (1, 0, 1)! (2, 0, 1)1 (2, 0, 2)1, (1, 0, 2)1 (2, 0, 1)2, and
(1, 0, 1)1 (2, 0, 1)1 (2, 1, 1)1. The first decomposition (1, 0, 1)2 (3, 0, 2)' means that
edge-evaluated ternary rooted trees are constructed from three subtrees composed
of 1, 1, and 3 vertices, respectively, these subtrees are of zero unsaturation, and
finally, the first two subtrees (with 1 vertex) are connected with the root by single
edges whereas the third subtree (with 3 vertices) is connected with the root by
a double edge. The decomposition (a, j, r) (b, k, s)"... restricted by Eqs (36a

—36c)
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means that an edge-evaluated q-nary rooted tree is constructed such that we use ct
subtrees with a vertices and with unsaturation equal to j; their roots are adjacent
to the root v by r-tuple edges. The remaining terms in the decomposition are inter-
preted similarly. The number of all possible contributions from this first term is
equal to The total number of produced rooted trees, corresponding to the
integer r,11, is determined by

p—i
r1 = [r] [r,']

q1 a[i]bIk]P...

where the second summation runs over all possible distinct decompositions (a, j, r)
(b, k, s)... that are restricted by Eqs (36a —36c). Hence, in order to enumerate
the rooted trees with p vertices and with unsaturation i, i.e. the number 41,we have
to know their preceding values r,V1, for 1 p' < p and 0 i. Simple illustra-
tive examples of the constructive enumeration of edge-evaluated rooted trees are
given in Fig. 10. If we restrict the valences of vertices from above by 4, then the
produced rooted trees correspond to monosubstituted acyclic hydrocarbons (or
radicals) with multiple bonds.

, .
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Now we are ready to pay our attention to the constructive enumeration of trees
with multiedges. We have to distinguish between two different cases, represented by
trees with odd or even number of vertices (see Section 5).We shall not repeat all the
details of this process, it has already been outlined in Section 5,it is only necessary to
introduce some additional specifications of rooted trees (e.g. their unsaturation
and multiplicities of created edges, see the first part of this section). Analogs of
Theorems 5, 6, and 7 are simply constructed, the concept of unsaturation is im-
planted into the theory in the same way as for rooted trees in the first part of this
section. Moreover, the formulae (18) and (21) for numerical (i.e. nonconstructive)
enumeration of trees with centroids and multiedges are formally correct with small
modification in the second summation, which is now running over all possible distinct
decompositions of the type (35).The formula (23) counting the trees with bicentroid
should be slightly generalized as follows: We shall separately consider two distinct
decompositions (a,j, s)2 and (a,j, s)' (a,j', s)1, where in the second decomposition
the first and the third component must be equal (since these components determine
the number of vertices in subtrees and the multiplicity of edge which was created
by linking the roots of corresponding rooted trees, respectively). The above de-
compositions should be restricted by 2a = p, 2j + s — 1 = i and 2a p, j j',
j + j' + s — 1 = i, respectively. Then the number of trees composed of p 2k
vertices with bicentroid is

= [r] + rr' (39)s�1 s1 j*j'

where the first (second) term on the r.h.s determines the number of trees with a bi-
centroid corresponding to the first (second) decomposition. The second summation
in the second term runs over all possible nonnegative integers j j' restricted by
j + j' = 1 + i — s; these indices determine the unsaturation of rooted subtrees
used for the construction of trees with a bicentroid. The present approach for enu-
meration of trees with multiedges is illustrated in Fig. 11. Simple numerical enumera-
tion of hydrocarbons with multiple bonds was carried out initially by Read2.

7. FURTHER GENERALiZATIONS

The method outlined in the first part of this communication allows us to construct
both rooted trees and trees. Its generalization towards accounting of the multiedges
was also already discussed in the previous section. The multiedges were covered
in the concept of unsaturation. This nonnegative integer corresponds to the sum
of edge multiplicities decreased by 1, i.e. an actual value of unsaturation corresponds
to several different cases with specific numbers of double, triple, ... edges. For some
special application it is more important to construct trees with prescribed distribu-
tion of edge multiplicities. Of course, such a version of our constructive enumeration
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requires deeper description of trees which are to be constructed. Therefore, the trees
should be now described by some additional entries specifying the number of double,
triple, ... edges. The edge multiplicity distribution is simply determined as an ordered
n-tuple of nonnegative integers,

(40)

where the u-th entry i, corresponds to the number of edges with multiplicity equal
to (u + 1). For instance, let us consider a rooted tree composed of p vertices and
with the edge multiplicity distribution determined by I, then an analog of Eq. (35)
may now look as follows:

(a,j, r) (b, k, s)... . (41)

The n-tuples j, k, ... specify the edge multiplicity distributions of the corresponding
subtrees and are restricted by integers r, s, ... in such a way that the overall edge
multiplicity distribution i remains unchanged. The concept of edge multiplicity
distributions is very appropriate for a generalization of the constructive enumeration
of tree with multiedges presented in the previous section, the used theoretical tools
need only slight modification without the necessity to introduce any additional
theoretical concepts.

Next generalization of the present theory consists in an evaluation of vertices by
alphabetic symbols (which correspond to atomic symbols). We shall also assume
that this vertex evaluation determines maximal valences of vertices depending on the
used alphabetic symbol. Such generalization gives, in fact, the trees with straight-
forward 1—1 correspondence to heteroatomic acyclic molecules composed not only
of carbon atoms but also of the heteroatoms (e.g. nitrogen, oxygen, etc.). A class

Fio. 11

The upper part of the figure contains trees
composed of four vertices and with unsatu-
ration equal to 2. The bottom part contains
trees composed of five vertices and unsatura-
tion 1. The second and third rows contain
trees with bicentroids (bold line), other rows
contain trees with a centroid (heavy dot)
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of such trees is determined simultaneously by an edge multiplicity distribution as
well as by a distribution which determines how many vertices are evaluated by the
same alphabetic atomic symbol with predetermined maximal valence. First problem
which should be solved is an extension of the linear code approach to trees with
evaluated vertices (and edges). Let us consider a tree T(V, E), its vertices and edges
are evaluated by

(42a)

(42b)

where the mapping p evaluates the edges by multiplicities and the mapping w
evaluates the vertices by atomic symbols from the vocabulary 'V'. We assume that
this second evaluation also determines the maximal valences of evaluated vertices.
For simplicity, we shall postulate that the vocabulary "K is composed of one-term
alphabetic symbols, e.g. C, N, 0, ..., where the maximal valence of vertex evaluated
by C (N, 0, ...) is four (tree, two, ...). The tree T(V, E) with vertices and edges
evaluated by mappings p and w, respectively, is expressed by an ordered quadruple,

T(q, w) = (V, E, çü, w). (43)

In a similar way we introduce the notion of rooted tree with evaluated vertices and
edges. Let v e Vbe a vertex of T(V, E). If we classify this vertex as the root, then the
corresponding rooted tree is

T(v, p, w) = (V, E, v, p, co). (44)

Let us consider a rooted tree T(v, p, co). Deleting from this rooted tree its root v,
which is incident with q vertices v1, v2, ..., vq} V, we get the first generation
verex and edge-evaluated rooted trees T1(v1, p, cot), T2(v2, (P2, w2), ...,Tq.
•(vq, (Pq, (Oq). The mappings tPi, (P2' ..., (Pq and W1, (O, ..., (Oq are simple restrictions
of the original mapping p and co, respectively, with respect to the vertex and edge
sets V1, V2, ..., and E1, E2, ..., Eq (cf. Eq. (29)).

The linear codes of vertex and edge-evaluated rooted trees are constructed by
a similar way as in Section 6 for the edge-evaluated rooted tree, the so-called en-
larged code of the rooted tree T(v, cot) is determined by

code (T1(v1, p. cu)) = 'co(v)' + &ã (T(v1, co1)) , (45)

where (T(v1, cu)) is the enlarged code of rooted tree T1(v, p, cot) deter-
mined by Eq. (30). It means that this enlargement of linear code consists in an addi-
tion of a two-term substring, composed of the atomic symbol of root and the multi-
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plicity of edge [v, v1]. The overall linear code of rooted trees is then formed by an
analog of Eq. (31), where the substring 'q' is now substituted by 'w(v) q', i.e. it is
extended by the atomic symbol of the root. The procedure of construction of linear
codes is recursively repeated until the produced first generation rooted trees become
composed of only one vertex (marginal vertices). We assign to these marginal
vertices a two-term linear code 'co(v) 0', where w(v) is atomic symbol of a marginal
vertex v. Table I lists all possible trees composed of six vertices and with special
vertex evaluation (hydrogens are added subsequently).

8. CONCLUSIONS

The general theory of constructive enumeration of rooted trees and trees may be
simply generalized and/or modified in such a way that it handles acyclic molecular
structures possessing multiple bonds and heteroatoms. As a byproduct of the theory
simple formulae for numerical enumeration of (rooted) trees were obtained. Their

TABLE I
All acyclic molecules with empirical formula C3H3N3 and with unsaturation equal 4. The con-
structed molecules contain either four double bonds, or two double bonds and one triple bond,
or finally, two triple bonds

No. Formula No. Formula

1 NH=C=C=C=N—NH2
2 NH=N—N=C=C=CH2
3 CH- C—N=C=N----NH2
4 NH=C=N—N=C=CH2
5 NH=C=N—CC—NH2
6 NH=C=C==N—N=CH2
7 NH=N—CC---N=CH2
8 CHC—N=N—N=CH2
9 NC—CH=N—N=CH2

10 NC—CH==C=N—NH2
11 NH==C=C==N—CH=NH
12 NH=N—CsC---CH=NH
13 CFLsaC—N=N-—CH=NH
14 NC—CH=N—CH=NH
15 CH,=C=N—NH----CN
16 NH2—CC—NH—CoN
17 NC—N=C=N—CH3
18 NH==C=N—NH—CCH
19 NaC—NH—NH—CCH
20 NC—CaC—NH---NH2

21 NH=N—N=CH—CCH
22 NH=C=C=CH—N=NH
23 CHC—N=CH—N=NH
24 N:C—CH=--CH—N=NH
25 NC—N=C=CH—NH2
26 NH=C=N—CH=C==NH
27 NEEEC—NH—CH=C=NH
28 CH2=N—CH=---N—CN
29 NH=CH—CH=N—CsN
30 NC—N=N—CH--=CH,
31 CH3—N(—CN)2
32 CH2=N—C(—CN)=NH
33 NH=CH—C(—CmN)=NH
34 NH2—N(—CmN)—CCH
35 CH=C(—CN)—N=NH
36 NH=C=C(—CN)—NH,
37 NH=N—C(—CCH)=NH
38 NH=C=N—CH2—CN
39 NC—NH----CH2—CeN
40 NH2—CH(—CN)2
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derivation is based purely on simple combinatorial considerations. Of course,
they may be derived very elegantly by making use of the Polya theorem20'21. But
their forthcoming generalization to cover more complicated tree systems of chemical
interest (in particular, multiple edges, heteroatoms, restrictions of different kind
imposed on valences of vertices, etc.) usually involves many formal difficulties.
Furthermore, the enumeration methods based on Polya theorem give only numbers
of isomers, a result of very limited importance and little impact to chemistry.

The theory of constructive enumeration of trees presented in this communication
represents a unified approach for exhaustive construction of acyclic molecular
systems The approach can be simply modified and/or extended to produce trees
with specifically restricted topology. It may be understood as a graph-theoretical
and combinatorial formulation of the Lederberg's4'5 intuitively formulated con-
structive enumeration of acyclic molecules. In this approach the central role plays
the concept of centroid and bicentroid unambiguously determined according to
Jordan theorem (see Theorem 1). Then, having an appropriate method for con-
struction of linear codes of (rooted) trees, the constructive enumeration is relatively
simple and straightforward task. It means, that under the term "constructive enume-
ration" we understand a sequential construction of linear codes of (rooted) trees
from the already known linear codes of rooted trees containing substantially less
vertices than those ones just constructed. This construction may be formally omitted
and give us thus a simple method for numerical enumeration of (rooted) trees re-
stricted by specific requirements.

The mentioned restrictions imposed on the produced (rooted) trees are of simple
nature, e.g. number of double and/or triple edges, maximal valence of vertices, etc.
For constructive enumeration of acyclic molecules with importance for structure
elucidation there are much more complex and diverse restrictions and requirements
specifying acyclic subgraphs that are either forbidden or required for constructed
molecules. The only known method6 that is able to implant these restrictions and
requirements, involves a check in the course of constructive enumeration of rooted
trees as well as trees, whether the forbidden/required structures are or are not sub-
graphs of just constructed (rooted) tree. If the answer is positive in the case of for-
bidden structures, then the given checked (rooted tree) is eliminated from the process
of constructive enumeration. In the case of a required structure we take a note on
the appearance of the substructure and we continue the process. We see that this
straightforward approach may be, for larger molecular systems, picturesquely in-
effective, since it needs a very fast method for finding of subgraphs in acyclic mole-
cular structures. Above the general graph-theoretical formulation of the problem
of elimination of forbidden substructures and/or accounting for only the molecules
with required substructures (together with their number of appearance) though
conceptually very simple, represents a very serious problem of all constructive
enumerations and remains yet to be solved.
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